If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7+16t-4.905t^2=0
a = -4.905; b = 16; c = +7;
Δ = b2-4ac
Δ = 162-4·(-4.905)·7
Δ = 393.34
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-\sqrt{393.34}}{2*-4.905}=\frac{-16-\sqrt{393.34}}{-9.81} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+\sqrt{393.34}}{2*-4.905}=\frac{-16+\sqrt{393.34}}{-9.81} $
| 71-x=291 | | 3x-7=3(3x-9)+2 | | T=(2x+85) | | (2y-15)+y+20=180 | | 10^{3x}-5=314 | | (y+4)/10=0 | | 3x+20=2x+20 | | 2y/19=4 | | 5x-0=9 | | 75,000=10,000(1.09)3x | | −(2−10c)=43+5c | | (y+9)/2=3 | | 6x-40=90° | | 3^x=181 | | 13.6(–3v+1)=5(–2v–2) | | 1/4(-12c+20)=-5-c | | y/3+0.5=0 | | 34x−5=4x= | | 3m-2=5m+42 | | 34x−5=4 | | (3x+1)^2+5(3x+1)-6=0 | | 6y-15=35+2y | | 8/z-8+1=z/z+8 | | 16x+2=-15+4x | | (4r-3)^2=9 | | p-3⅙=-2⅚ | | p-3⅙=1⅚ | | -11j-2(2-8j)=14 | | 12=9m-15 | | 1-3c/2=-1/4 | | -4(-1y+6)=-40 | | 56+76+z=180 |